
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Developing Sport Activity Processing
Application with Motivational Features

Bc. Tomáš Zahálka

Supervisor: Ing. Zdeněk Rybola, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
May 2019

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

420918Osobní číslo:TomášJméno:ZahálkaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Developing Sport Activity Processing Application with Motivational Features

Název diplomové práce anglicky:

Developing Sport Activity Processing Application with Motivational Features

Pokyny pro vypracování:
The aim of this thesis is to create a system for synchronizing and analyzing data from an external sport activity tracking
app. The system will consist of a set of services hosted on a server and an Android client application.
1. Specify features of the system, focusing on achievements in different sports and activities
2. Review existing solutions and technologies
3. Design the mobile app and define the requirements for the backend interface
4. Design the backend part of the system
5. Implement the whole system based on the design
7. Document the implementation of the system
8. Test the implemented system appropriately, including UI, API and performance

Seznam doporučené literatury:

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Zdeněk Rybola, Ph.D., katedra softwarového inženýrství FIT

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 07.02.2019

Platnost zadání diplomové práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Zdeněk Rybola, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I would like to thank my supervisor Ing.
Zdeněk Rybola, Ph.D. for a great deal
of help during the process of writing this
thesis. His approach, deep knowledge of
the subject and experience were priceless.

Special thanks goes to my family and
friends for their encouragement and for
supporting me throughout my studies.

Declaration

I hereby declare that the presented thesis
is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

I acknowledge that my thesis is subject
to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright
Act, as amended, in particular that the
Czech Technical University in Prague has
the right to conclude a license agreement
on the utilization of this thesis as school
work under the provisions of Article 60(1)
of the Act.

In Prague on May 22, 2019

v

Abstract

This master’s thesis deals with designing
and creating an application for synchro-
nizing and processing sport activity data
that motivates users to lead an active life.
The thesis analyzes the current state of
the art and proposes a new solution.

The final product includes a client for
Android and a server part implemented
in the Spring Boot framework. The appli-
cation contains a concept of achievements
that are unlocked by the users based on
their activity recordings. These record-
ings are synchronized from the fitness-
tracking application Strava and stored on
the server. The app implements a system
that allows to easily define achievements
with various conditions required for un-
locking. The Android app uses modern
technologies and supports data caching.
The server part is scalable as it consists of
multiple services, which can be deployed
independently.

Keywords: sport, activity, motivation,
processing, Android, Spring, Strava,
microservices, synchronization

Supervisor: Ing. Zdeněk Rybola, Ph.D.
Department of Software Engineering,
Faculty of Information Technology,
Czech Technical University in Prague,
Thákurova 9,
Prague 6

Abstrakt

Tato diplomová práce se zabývá návrhem
a vytvořením aplikace pro synchronizaci
a zpracování dat ze sportovních aktivit,
která motivuje uživatele ke zdravému ži-
votnímu stylu. Práce analyzuje současný
stav a navrhuje nové řešení.

Finální produkt obsahuje klientskou
aplikaci pro Android a serverovou část
implementovanou ve frameworku Spring
Boot. Aplikace obsahuje koncept ocenění,
které se dají uživateli odemknout na zá-
kladě záznamů jejich aktivit. Tyto zá-
znamy jsou synchronizovány z fitness apli-
kace Strava a ukládány na serveru. Apli-
kace implementuje systém, který umož-
ňuje snadno definovat ocenění s různými
podmínkami pro jejich odemčení. Android
aplikace používá moderní technologie a
podporuje cachování dat. Serverová část
je škálovatelná díky tomu, že se skládá z
více služeb, které lze nezávisle nasazovat.

Klíčová slova: sport, aktivita,
motivace, zpracování, Android, Spring,
Strava, mikroslužby, synchronizace

Překlad názvu: Vývoj aplikace pro
zpracování sportovních aktivit s
motivačními prvky

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Application Description 1

1.3 Goal of the Thesis 2

2 Analysis 3

2.1 Existing Applications 3

2.1.1 Strava . 3

2.1.2 Strava Apps 6

2.1.3 Garmin Connect 9

2.1.4 Summary 10

2.2 Requirements 11

2.2.1 Functional Requirements 11

2.2.2 Non-functional Requirements 14

2.3 Domain Model 15

2.4 Use Cases . 18

3 Design 23

3.1 Overview . 23

3.2 Android App 23

3.2.1 User Interface 25

3.2.2 Authentication 29

3.2.3 API . 29

3.2.4 Entities 31

3.3 Backend . 31

3.3.1 Service Architecture 32

3.3.2 Services 33

3.3.3 External Systems 35

3.3.4 Entities 36

3.3.5 Authentication 39

4 Implementation 41

4.1 Android App 41

4.1.1 Structure 42

4.1.2 Libraries 42

4.1.3 User Interface 42

4.1.4 ViewModel 43

4.1.5 Models 43

4.1.6 Local Storage 43

4.1.7 Caching 44

4.1.8 Authentication 44

4.2 Backend . 44

4.2.1 Structure 45

4.2.2 Libraries 45

4.2.3 Authentication 46

4.2.4 Activity Synchronization 47

4.2.5 Achievements 47

4.2.6 Communication between
Services . 48

vii

4.2.7 Deployment 49

5 Testing 51

5.1 Android App Testing 51

5.1.1 End-to-end Tests 51

5.2 Backend Testing 53

5.2.1 API Tests 53

5.2.2 Unlocking Achievements 53

5.2.3 Integration Tests 54

5.3 Manual Testing 54

5.4 Performance 55

6 Conclusion 57

6.1 Implemented Application 58

6.2 Future Work 59

Bibliography 61

A Acronyms 67

B Contents of enclosed SD Card 69

C User Manual 71

viii

Figures

2.1 Strava Challenges—screenshot [1]. 5

2.2 Strava Matched Runs
feature—performance trend [2]. 6

2.3 VeloViewer—Your Summary
screenshot [3]. 8

2.4 Garmin Connect—earned Badges
screenshot [4]. 10

2.5 Domain model. 16

2.6 Actors in the system. 18

2.7 Mobile application use cases. . . . 19

2.8 Backend use cases. 20

3.1 System overview. 24

3.2 Mobile app architecture. 25

3.3 Data loading decision tree [5]. . . 26

3.4 Dashboard screen layout. 27

3.5 Achievements screen layout. 28

3.6 3-layer architecture of a backend
service. 33

3.7 Backend services. 34

3.8 Sequence diagram—activity
synchronization. 37

3.9 Database model—Authentication
service. 38

3.10 Database model—Activity
service. 38

4.1 Backend project structure. 46

4.2 Production deployment. 50

5.1 Latency for different number of
service instances. 56

6.1 Mobile application—screenshot. 58

ix

Tables

4.1 Libraries in the Android project. 43

4.2 Spring Cloud libraries. 46

5.1 Performance testing results. 56

x

Chapter 1

Introduction

The first part explores the main drivers that stimulated the creation of this
thesis, summarizes the functionality of the application and states the goal of
the thesis.

1.1 Motivation

For today’s athlete, there any numerous options for tracking their performance,
including various apps and devices. However, in my opinion, there are still
ways to go in terms of increasing the motivation for a regular user to stay
being active. There are definitely many great apps with features that do
incentivize active lifestyle. Despite this fact, there is a large room for new
ideas. The one area in this space that I found not fully developed is the
concept of giving athletes awards for their performance. As I mentioned,
recording the performance data is done well by various means, so we do have
a vast amount of data available to further analyze. That is why I focused
only on analyzing the data, and thought about a way it could be used to
reward users for their healthy lifestyle.

1.2 Application Description

This section describes the expected functionality and the main features of
the app from the user’s point of view. The name chosen for the app is
Sportivator, which is also used throughout the thesis.

The main goal of this app is to provide users of sport activity tracking

1

1. Introduction
apps with some insights into their data and in turn to give them incentive
to be active and stay fit. For this thesis, Strava was chosen as the external
tracking app because of two main reasons:..1. It offers a great Application Programming Interface (API) [6]...2. It has a large active user base.

Strava even host a curated list of apps from developers that utilize the API
[7], which makes them more easily discoverable.

Users are rewarded for their activity in the form of achievements. Achieve-
ment is a key concept for Sportivator and represents some form of a milestone
a user can reach. Milestones might take different forms, examples include
being active some predefined amount of time, or achieving some minimum
average speed for activities in a day. These achievements are highlighted for
different time intervals: week, month, year and all-time. The goal for the
user is to unlock all achievements in the long term, but they might attempt
to unlock the easier ones regularly. The regularity of the process is important
as it can help create a habit for the user to unlock some achievements all the
time and serve as a warning if they are not able to do so.

Sportivator runs on Android mobile devices, and is easy to use as it provides
a simple user interface. Users log in to the app using their Strava account.
They can ask the app to synchronize their Strava activities, and once it is
completed, they are presented with the unlocked achievements.

1.3 Goal of the Thesis

The goal of the thesis is to create an application that satisfies the functionality
stated in the previous section. The process consists of several steps.

The first step is to look into solutions with similar functionality on the
market, then define the requirements and features of the app. This is followed
by designing the structure and components of the system while using best
practices that apply to this domain. Based on the design, specific technologies
are selected and the application is implemented. The final step is testing the
functionality and measuring the performance of the app.

2

Chapter 2

Analysis

The Analysis chapter looks at several existing applications with functionality
similar to the one proposed and implemented as part of this thesis, then lists
all the requirements for the app.

2.1 Existing Applications

I started my analysis as long-time user of a few sport-tracking apps. There
were features that I missed and had to look for elsewhere. Here, some more
detailed descriptions of the apps and features that I found, are provided.
Lastly, based on the analyzed apps, I state the criteria for implementing
Sportivator.

2.1.1 Strava

It has already been mentioned that Strava is the data provider of choice. In
this regard, it is certainly a great option at the time of writing this thesis.

The website says: “The #1 app for runners and cyclists.” [8]

So, the main focus of Strava is on these two segments of sports, although
other sports are available. The primary use of the app is for tracking activities
with location, health and other data. The most interesting data for my analysis
are distance, moving time and elevation gain. These data are presented in the
detail of each activity recording. There are also charts for additional analysis
of athlete’s performance.

3

2. Analysis
Strava is a huge network of athletes. Everyone can connect with their

friends and see their activities. They can give those activities kudos and
comment on them.

In addition to that, Strava already contains some functionality with moti-
vational features.

Segments

“Your GPS-based activities can be broken down into smaller sections called
segments. Segments designate specific features or portions of a route – such
as a climb, a tricky stretch of trail or part of an open-water swim. Each
time you complete a segment, your time is recorded so you can compare it to
previous efforts and those of your friends and other athletes.” [9]

This feature has a big social aspect as the user can compare to others in
leaderboards. There is a concept of achievements included in Segments too.
“When you upload an activity to Strava, you may be awarded ‘achievements’
for outstanding performances on the segments you traverse.” [9]

These achievements are:

Crown King/Queen of the Mountain (KOM/QOM) or Course Record (CR).

Trophy Overall Top 10 Placement.

Medal Personal Top 3 Placement.

Strava Challenges

“Strava offers several different types of challenges as a fun way to motivate
people to push themselves and accomplish a specific goal. Challenges can
last a day, several days or even an entire month. They can be a single
activity or cumulative. We currently host running and cycling challenges
that are typically centered around hitting a certain distance or elevation.
Sometimes we pair with partners to bring you challenges that offer a prize
for completing.” [10]

In summary, this feature is a way to reward the user for a sustained effort
over a stretch of time. The user needs to join a Challenge manually in order
to be considered for its completion. Figure 2.1 depicts a list of Challenges as
it is available in the Strava mobile app.

4

....................... 2.1. Existing Applications

Figure 2.1: Strava Challenges—screenshot [1].

Matched Runs

As the name implies, this feature works only for workouts with running as
the sport type, and it is a great way for the user to look into their own
performance on their favorite route.

“Matched Runs uses an algorithm to automatically identify when you have
completed runs on a route that has been run before. Run the same route
multiple times and Strava will group all the efforts together in a single chart
to show you a performance trend over time. In order to match similar runs,
the algorithm identifies the starting and ending point of the route, the direction
in which the route was run, and the distance completed.” [11]

An example of a performance trend as presented in the Strava mobile app

5

2. Analysis
is shown in figure 2.2.

Figure 2.2: Strava Matched Runs feature—performance trend [2].

2.1.2 Strava Apps

The Strava Apps section on the Strava website is a database of many useful
third-party apps organized into several categories [7]. For my analysis, the
most notable categories were Performance Analysis, Training and Social
Motivation. All these apps use Strava as their data source, but some of them
also support other fitness services.

6

....................... 2.1. Existing Applications

VeloViewer

This is a very complex app with many features that is used even by professional
cycling teams. As such, it is focused more on detailed analysis and exact
numbers rather than “attractive” awards.

“VeloViewer provides new insights, engaging visualizations, motivational
goals and in-depth analysis to your Strava data.” [12]

Nevertheless, it does contain three forms of Awards for different activity
parameters (distance, elevation, time). Each Award has a number of stars
that indicate how many times (number of activities) the user met a certain
condition for up to three stars. For example, the user might have gained 500
m in elevation in an activity, this gives them one star for the 500 m Elevation
Reward.

The app can generate an Infographic for every year that summarizes various
statistics in a single image. It also provides other visualizations of the data.
The app is not available in a mobile version but offers a web interface. Example
of the Summary page is shown in figure 2.3.

rubiTrack

Another service targeted at detailed analysis of workouts is called rubiTrack
[13].

It boasts with a very appealing user interface. There are detailed charts
and lists with various data from the recordings. An interesting feature is the
ability to compare activity data (like distance and pace) between different
time periods. “It quickly answers questions like this: ’What was my total
distance in the last 5 weeks, and how much more was it compared to the
previous 5 weeks?.’ ” [14]

To mark milestones in their training, users can add events to their calendar.
The calendar can display activities and their data with multiple levels of
detail.

Activities can be downloaded not just from Strava, but also from other
devices and services. Its availability is limited to macOS and iOS.

7

2. Analysis

Figure 2.3: VeloViewer—Your Summary screenshot [3].

WeFitter

WeFitter is a bit special as it is not directly targeted at end users but rather
businesses for customized implementation. The website says: “Turn your
business into an engaged and healthy community.” [15]

Their system takes data from more that 20 fitness applications and makes

8

....................... 2.1. Existing Applications

them available under a single API. The idea is to lower healthcare costs for
the company “by encouraging employees to lead a healthy lifestyle.” [16]

Employees get customizable rewards through a gamification system to drive
engagement. There are also leaderboards in order to allow the employees to
compare themselves with others, and to increase their motivation. Multiple
well-known companies are listed between clients that implemented WeFitter
into their company [17].

A similar program targeted at cities exists as well. A dedicated website
shows a leaderboard with cities that have joined the program along with some
statistics. [18]

2.1.3 Garmin Connect

Garmin Connect is the official app for users with Garmin devices. It is
available as a mobile app or through a web interface. Both versions contain
customizable Dashboards with different data (e.g. steps, calories). With
a suitable device, it can track activities, or the user can import activities
manually.

“On mobile or web, Garmin Connect is the tool for tracking, analyzing and
sharing health and fitness activities from your Garmin device.” [19]

The most notable feature for my analysis are Badges.

“Garmin Connect offers a variety of different badges that you can earn
on a daily bases from getting a good night’s sleep (Well Rested badge), to
running that 100 mile race that you knew would be a piece of cake (Insanity
badge).” [20]

Badges can be filtered by several categories. The user can display only
earned Badges as well as all available Badges. Each one has the following
attributes:

. image,. name,. description,. number of points.

For each Badge, related ones are shown as well. If a Badge was previously
unlocked, the user can see the date of when that occurred. Each user also has

9

2. Analysis

Figure 2.4: Garmin Connect—earned Badges screenshot [4].

a Level, which is determined by the sum of all points from earned Badges. The
Badge images are colorful with various effects, and the overall presentation is
very attractive. Figure 2.4 shows the screen with earned Badges.

2.1.4 Summary

The analysis of the market gave me an inspiration for my own app and showed
missing areas that can be addressed. Badges in the Garmin Connect app
represent a functionality that most closely resembles the functionality of
the app proposed in this thesis. However, the main limitation for me is the
fact that a Badge cannot be earned multiple times for different time periods.
Another limitation is that a Badge cannot combine multiple conditions (e.g.
consider both distance and elevation).

10

.......................... 2.2. Requirements

From all of the above, following are the basic criteria I laid down for
implementing the app...1. Provide a clear user interface...2. Focus on periodic achievements...3. Consider multiple activity attributes for a single achievement.

2.2 Requirements

Following are the requirements divided into functional and non-functional
categories.

2.2.1 Functional Requirements

These are the requirements describing the functionality the application must
provide.

FR-01 Strava authentication

The user can authenticate with Sportivator by using their Strava account. The
system stores user’s tokens for accessing the Strava API. The user authorizes
access to their data through a prompt either on the Strava website, or through
the official Strava app if they have it installed on their device.

FR-02 Request activity synchronization

The client can request an import of new activities from Strava. The request
is accepted by the system only if any of these conditions are satisfied:..1. No request has been made yet...2. A defined time duration has passed since the last request.

Each request syncs activities with a start time in a certain time range. If
there is no previous sync request, a new sync is performed for up to last

11

2. Analysis
40 activities. If there is a previously completed request, the new sync is
performed for a range that starts at the end of the previous range and ends
at the current time.

FR-03 Number of synchronized activities

The user is able to see the number of currently synchronized activities.

FR-04 Current activity synchronization state

The client can see the state of the last issued activity synchronization request.
The possible states are:

.Never—no request has been issued yet,. Started—synchronization is in progress,.Completed (and the time of completion)—synchronization was com-
pleted,. Error—the request ended with error.

FR-05 Notify user of sync completion

The user is notified once the previously requested activity synchronization is
completed.

FR-06 Achievements check

The system checks for new achievements that can be unlocked. This is
performed automatically each time after any new activities are synchronized.

FR-07 Unlocked achievements

The user is presented with both a number and a list of currently unlocked
achievements for each time interval:

. week—unlocked since the start of the current week,

12

.......................... 2.2. Requirements

.month—unlocked since the start of the current month,. year—unlocked since the start of the current year,. all-time—unlocked anytime.

The intervals are combined with a filter for a type of sport, one of:

. run,. ride (cycling).

FR-08 Achievement unlock detail

Details of an unlocked achievement can be displayed, including:

. name of the unlocked achievement,. description of the achievement,. the time period for which it was unlocked,. the date when the achievement was last unlocked.

FR-09 Achievements

Achievements available for the user to unlock are listed below along with the
names, conditions and other parameters.

Run 5 km. Run at least 5 kilometers in a single day. Available weekly and
monthly.

Fast Pace. Achieve a running pace of 4:30 minutes per kilometer and cover
at least 3 kilometers in a day. Available for all time periods.

Hill Runner. Gain at least 50 meters in elevation and achieve a pace of 4:45
minutes per kilometer in a day. Available for all time periods.

30-minute Runs. Run for 30 minutes on at least 2 days in a time period.
Available weekly and monthly.

13

2. Analysis
Tough Week. Run 20 kilometers in total with a duration of at least 90
minutes in a week. Available weekly.

Fast Ride (30 km). Ride at least 30 kilometers with an average speed of
25 kilometers per hour in a single day. Available for all time periods.

Ride 100 km. Cover 100 kilometers in a single day (ride). Available for all
time periods.

Climber. Gain at least 300 meters in elevation and achieve an average speed
of 20 kilometers per hour in a day. Available for all time periods.

Active Rider - Week. Ride for 2 hours and 50 kilometers in total per week.
Available weekly.

Active Rider - Month. Ride for 1 hour on at least 10 days in a month.
Available monthly.

2.2.2 Non-functional Requirements

These requirements are the “constraints that must be imposed on the design
of the system. . . .” [21]

I define several quality attributes and conditions under which the system
runs.

NFR-01 Android version

The mobile app can run on Android version 5.0 (API level 21) and higher.

NFR-02 Simple usage

Any function in the mobile app should be accessible by less than 3 clicks.

14

..........................2.3. Domain Model

NFR-03 Caching

Data from the backend should be cached in the mobile app and refreshed
only after a certain expiration time (if refresh is not invoked by the user
manually).

NFR-04 OAuth 2.0

The user can authenticate with the app using the OAuth 2.0 protocol [22].

NFR-05 Asynchronous processing

More performance-intensive tasks can be deferred and later processed asyn-
chronously when resources become available.

NFR-06 Horizontal scalability

The backend can be scaled by increasing the number of nodes.

2.3 Domain Model

The domain model represents identified entities of the system and the rela-
tionships between them. The diagram is depicted in figure 2.5.

User. The User entity holds authentication data for a single user in the
system. These data include the access and refresh tokens. It typically also
has External Authentication Data.

External Authentication Data. This entity holds the necessary authenti-
cation data for communication with an external service identified by the
external provider attribute. In the case of Sportivator, this would only be
Strava, but the system allows adding another external provider if needed.

Athlete. Athlete does not require any authentication data, and its only
connection to the User is through the id. It can have multiple Activities
and Achievement Unlocks.

15

2. Analysis

Figure 2.5: Domain model.

Activity. This entity stores the attributes of a single sport activity and
belongs to a single Athlete. The attributes hold values in metric units as
the Strava API returns data in the metric system. All of the attributes listed
below are stored in the system for further analysis:

. distance in meters,.moving time in seconds,. elevation gain in meters.

The entity has the external id and the external provider attributes, which
together identify it uniquely across all activities.

Activity Sync Request. Records a single request for the synchronization
of activities issued by the user. Each request synchronizes activities for a

16

..........................2.3. Domain Model

certain time range. It can be in several states.

Achievement Definition. This entity defines an achievement that can be
unlocked by the user. It is uniquely identified by a key. It has a user-friendly
name, applies to a sport and can be unlocked only for the defined time periods.
These sport types are defined:

.Run (running),.Ride (cycling).

The attribute days is optional, and if defined, the Achievement Condi-
tions must be satisfied for the specified minimum amount of days (Activities
grouped by days) in the time period. Otherwise, the conditions can be satisfied
by looking at all Activities in the time period (grouped by time period).

Achievement Condition. The condition of an Achievement has a single
attribute function, which defines the aggregation function performed on an
attribute of the Activities. Typically, we are interested in a sum, e.g. the
sum of distances of Activities in a time period.

Achievement Constraint. This entity defines the constraint on the result
of the function from the Achievement Condition. The param defines the
attribute of an Activity we are interested in, e.g. the moving time, and
represents the first operand. The second operand is a value, e.g. 1000. The
operator is the operation performed on those two operands, e.g. greater than
or equal to. In this example, the constraint would be: moving time is greater
than or equal to 1000. There can also be two params not defined in the
Activity entity:

. pace—minutes per kilometer (typical for running),. average speed—kilometers per hour (typical for cycling).

These represent special cases and must be used along with the division
aggregation function in the Achievement Condition, since computing the
values requires looking at both distance and time attributes and dividing
them.

Achievement Unlock. The Achievement Unlock entity is related to a
single Athlete and unlocks a single Achievement Definition. The unlock
occurs for a time period and at a certain date and time.

17

2. Analysis
2.4 Use Cases

Use case is a “way in which a system can be used, described as a step-by-
step sequence of actions, along with the system’s response and certain other
information.” [21]

Actor represents a “role that a user or some other system plays when
interacting with. . . system.” [21]

Figure 2.6 shows the actors identified in the system. Figure 2.7 shows the
use case diagram in the context of the mobile app, and figure 2.8 the use
cases for the backend. Following are the descriptions of the use cases.

Figure 2.6: Actors in the system.

UC-01 Authenticate through Strava (mobile app)

When the app is first launched, or the user is not currently authenticated in
the app, a screen prompting to authenticate with Strava is displayed. The user
clicks on a button, is redirected to the Strava app or website and authorizes
access to their data. This takes them back to the app, the authentication
process completes and opens the main screen in the app.

18

............................ 2.4. Use Cases

Figure 2.7: Mobile application use cases.

UC-02 Logout

The user can logout in the app by navigating to the settings screen and
clicking on the logout option. This takes them to the initial authentication
screen.

UC-03 Request activity synchronization (mobile app)

To request the synchronization of activities, the user opens the app and clicks
a button on the main screen. The app sends the request and displays a new
state.

UC-04 View current synchronization state

When the user opens the app, the current state of the latest request for
synchronization of activities is displayed on the main screen. If it was
completed previously, the state also displays the date and time of completion.
The last state can be refreshed by the user, and it is refreshed automatically
after the app is notified by the messaging service.

19

2. Analysis

Figure 2.8: Backend use cases.

UC-05 View number of synchronized activities

The user can see the number of currently synchronized activities on the main
screen. This number is requested automatically by the app or refreshed upon
a user’s decision to do so.

UC-06 View achievements summary

The number of achievements for each time period is displayed for the user on
the main screen. It can be refreshed by a button.

UC-07 View list of unlocked achievements

To display a detailed list of unlocked achievements, the user has to click a
button to open a separate screen. The list there can be further filtered by
a time period and sport. Default filters are selected at first when the user
navigates to the list.

20

............................ 2.4. Use Cases

UC-08 View achievement unlock detail

The user can display the details of an unlock of a single achievement by opening
the app, navigating to the screen with the list of unlocked achievements, and
clicking on the desired item representing the unlocked achievement. This
opens a dedicated screen displaying the details.

UC-09 Refresh data

The user can manually refresh the state of the latest activity synchronization
request, the number of synchronized activities and the achievements (including
the summary) by pressing a button on the main screen. The refreshed data
are then displayed.

UC-10 Authenticate through Strava (backend)

Authentication requires input from the user, which is processed by the mobile
app and forwarded to the backend. The backend exchanges authentication
information with Strava, and looks whether the user’s account was previously
created. If no previous account is found, a new account is created. Then the
backend issues new authentication tokens and returns them to the mobile
app. This completes the authentication process.

UC-11 Request activity synchronization (backend)

The mobile app sends a request for activity synchronization to the backend
through the API. The backend then puts this request to the message queue
and returns a new state to the app.

UC-12 Synchronize activities

Activities are synchronized from Strava asynchronously once a request is re-
trieved from the message queue. Then a request to check for new achievements
(that can be unlocked for the user) is added to the queue.

21

2. Analysis
UC-13 Check achievements

Checking for new achievements is performed asynchronously as well. The
backend processes the imported activities and determines which achievements
can be unlocked. The mobile app is then notified of its completion. To send
a message with the completion notification, an external messaging service is
contacted. The service sends the message to the mobile device.

UC-14 Retrieve current synchronization state

The mobile app contacts the backend to retrieve the current synchronization
state for the user and displays it.

UC-15 Retrieve number of synchronized activities

The mobile app asks the backend for the number of currently synchronized
activities on the user’s behalf. Once returned, the number is displayed.

UC-16 Retrieve unlocked achievements

The unlocked achievements are requested from the backend by the mobile app
to provide data for both the achievements summary and the list of unlocked
achievements.

22

Chapter 3

Design

In this chapter, the design choices for implementing the system are discussed.

3.1 Overview

The whole system consists of three major parts:

.mobile application for Android,. backend running on a cluster,. database.

Figure 3.1 depicts this situation.

3.2 Android App

Over the years, multiple architectures have been proposed for developing
Android apps and this area is still evolving. With that said, the Android
team has been active recently by introducing new libraries and creating
guidelines with best practices and recommended architectures [23]. One
of the recommended architectural patterns is called MVVM (Model-View-
ViewModel), which is also employed here. The components are shown in figure
3.2 and described below.

23

3. Design..............................

Figure 3.1: System overview.

View. The View displays the model (data) for the user on the screen. It also
handles user’s input, which is then forwarded to the ViewModel. It subscribes
to the ViewModel to receive updates of the model and other properties (e.g
progress update).

ViewModel. The ViewModel provides functionality to the View, however,
it does not contain any reference to it. It communicates with the Repository.

Repository. The Repository abstracts the underlying data sources. There
is a local and a remote source, these are combined together.

Local Storage. This component abstracts access to the database.

Remote. The Remote communicates with the backend through the API.

With that in mind and considering the requirements in the analysis part,
there are several points that I outlined for the design of the mobile app...1. It is offline-first. In other words, data should be loaded from the local

storage first before being fetched from the backend (caching). And only
after it is determined that the local data are expired, refresh should be
invoked. This also minimizes the communication with, and in turn the
performance demands on, the backend...2. It uses the principle of Single Source of Truth (SSOT). It means that
data always come from a single source, for example a database, and there
are no duplicates. So even when data are refreshed, they must be saved

24

...........................3.2. Android App

Figure 3.2: Mobile app architecture.

in the database, and this change is reflected in the UI by propagating
the change through the system...3. Reactive programming is employed here to support the propagation of
data updates. “Reactive programming is a general programming term
that is focused on reacting to changes, such as data values or events.” [24]

Diagram in figure 3.3, created by the Android team, shows the decision
tree for loading data from the local storage and fetching new data from the
network.

3.2.1 User Interface

The mobile app does not require an overly complex user interface, which is
also very clean. I designed an interface consisting of a bottom navigation
bar and a main content area. The bottom navigation bar allows switching
between two main screens: dashboard and a list of achievements. There is
also a screen dedicated to displaying details about an unlocked achievement.
The dashboard layout is depicted in figure 3.4, and the achievements screen
design is shown in figure 3.5. Following is a more detailed description of the
UI components.

25

3. Design..............................

Figure 3.3: Data loading decision tree [5].

Dashboard Screen

Synced Activities Information. This is an area with basic information about
synchronized activities. The key elements are:

. a label with a number of synchronized activities,. a label with date and time information about when the last synchroniza-
tion was completed,. a button for requesting activity synchronization,. a button for refreshing data.

Achievements Summary. Here, the user is presented with a summary of
their achievements. This part of the screen shows the number of unlocked
achievements for each time period.

Achievements Screen

The screen with achievements displays a list of unlocked achievements, and
hosts a filter on top for different time periods:

26

...........................3.2. Android App

Figure 3.4: Dashboard screen layout.

. week,.month,. year,. all-time.

There is a filter for sports as well.

The list contains items with each one representing an achievement with
the following elements:

. name,. description.

27

3. Design..............................

Figure 3.5: Achievements screen layout.

Achievement Unlock Details Screen

This screen displays some details regarding a single unlock of an achievement.
Located there are these elements:

. achievement name,. achievement description,. time period of the achievement unlock,. the date when the achievement was unlocked for the time period.

Login Screen

This screen hosts a button that starts the Strava login flow.

28

...........................3.2. Android App

3.2.2 Authentication

The user is authenticated through the OAuth 2.0 protocol [22]. Following are
the steps to complete the authentication from the mobile app’s point of view...1. The flow starts by contacting the backend, which responds with the

redirection to the Strava authorization page including a parameter with
a URI to redirect to after the user grants the permission...2. If the user has the official Strava app installed on their device, it should
open and prompt the user to authorize access to their data for this app.
Otherwise, the prompt opens in a browser...3. After the user gives the required permission, Strava redirects them back
to the app with a code required to finish the authentication...4. The code is sent as part of the redirection URI previously received in
step 1...5. The backend exchanges this code for a Strava access token, retrieves user
data, issues a new token and returns it to the mobile client...6. The mobile client saves this token for future requests.

3.2.3 API

Communication of the client with the backend is performed through HTTP
with requests and responses in the JSON format [25]. Based on the analy-
sis, following is the specification of the API required by the mobile client.
The descriptions include HTTP methods, paths, parameters and responses.
By default, paths that require authentication return an 401 Unauthorized
response status if the authentication fails.

GET /activities/achievements

Returns the achievement definitions. Requires authorization.

GET /activities/achievements/unlocked/{timePeriod}

Returns a list of unlocked achievements (unlocks) for a time period specified
by the timePeriod parameter in the path. Unlocks are returned for the
authenticated user (athlete). If the supplied time period is not found, the
response status is 404 Not Found.

29

3. Design..............................
GET /activities/data

The response contains the date the and time of the last successfully completed
activity synchronization and the number of currently synchronized activities
for the authenticated athlete.

GET /activities/sync/status

Gets the status of the latest request for synchronization of activities for the
authenticated athlete. This includes the current state, the date and time of
completion (if applicable), the number of activities that were synchronized
for this request (if completed), and the date and time of the next available
synchronization. If there was no previous request found, it is reflected in the
attributes.

POST /activities/sync

Requests a synchronization of activities for the authenticated athlete. The
response is the same as for the synchronization status request. There are
no parameters. If a new request cannot be issued yet, a 400 Bad Request
response status is returned.

GET /auth/oauth2/authorize/strava

This path is used for starting the OAuth authentication flow. The response
status is 302 Found (redirection) here with the Location header pointing
to the Strava authorization endpoint. The request is not required to be
authenticated.

GET /auth/oauth2/redirect

This is the final path to redirect to after a successful authorization on
the Strava endpoint. It returns the authentication tokens and expiration
information in the response. If the authorization could not be completed, the
response status is 401 Unauthorized.

POST /auth/token/refresh

Issues a new access token based on the supplied refresh token. The response
includes the new access token, a new refresh token and the expiration date
and time of the new refresh token. If the provided refresh token from the
client is invalid or expired, the response status is 401 Unauthorized.

30

.............................3.3. Backend

POST /auth/messaging/register

Registers a unique token from the client. The token is used on the backend
to send asynchronous messages through an external messaging service to the
client. The request contains the token and must be authenticated.

3.2.4 Entities

The mobile client identifies several entities (persisted in the database and
local storage).

.Achievement—represents a definition of an achievement..AchievementUnlock—an unlock of an achievement by the user for a
time period..ActivityData—holds information about the number of synchronized
activities and the date and time of the last successful synchronization..ActivitySyncStatus—status of a single request for an activity sync, it
can be in several states.

3.3 Backend

The backend is designed using the principle of the microservices architectural
style.

“Microservices are an approach to distributed systems that promote the use
of finely grained services with their own lifecycles, which collaborate together.
Because microservices are primarily modeled around business domains, they
avoid the problems of traditional tiered architectures.” [26]

So, the backend is a collection of largely independent services. Following
are the main benefits of this approach. Each service should focus on a single
business area, therefore it should be possible to manage it independently of
other services. This also supports loose coupling of the system. Services might
even use completely different technologies. They can be deployed quickly and
independently, and typically have their own data sources as well. It offers a
good scalability by replicating those services which have the highest load.

There are obviously some challenges with applying this architecture. One
of them could be a greater complexity of the whole system. Versioning and

31

3. Design..............................
managing contracts between services can introduce issues too. If, for example,
there are services dependent on the one being upgraded, the communication
might break due of incompatible interfaces. Logging of user requests and
determining the real cause of an error in the system is challenging as the
request might travel across multiple services [27].

Another option in terms of the architecture of the backend would be to
design a homogeneous system containing all of the functionality. To put it
in contrast with the independent microservices approach, all of them would
become a part of a single application. This style would mostly solve the
drawbacks of independent microservices, but it might be more difficult to
keep adding more features to it as the size and complexity grows (if we are
not careful and do not make clear boundaries between components). Making
a small change would require a redeployment of the whole application as
opposed to deploying a new version of a single service. Also, it is much less
scalable compared to the microservices style. However, it should be noted
that a performance issues scenario might not even occur for many apps. A key
metric to look at is the expected load of the application in time. Microservices
are an obvious choice for companies like YouTube and Netflix. In contrast, a
small online shop does not benefit from this approach as it only slows down
the development process.

The bottom line is that the right choice of architecture is largely dependent
on the application we are building. Even though the product created as part
of this thesis is not very complex, one of its objectives is to show that the
microservices architecture can be successfully applied here and that it keeps
the door open for additional functionality in the future.

3.3.1 Service Architecture

Each service in the system follows a layered architecture with three basic
layers (shown in figure 3.6):..1. Controller—provides the REST API and handles client requests,..2. Service—contains the business logic (a term used for a component in a

microservice),..3. Repository—abstracts access to the database.

32

.............................3.3. Backend

Figure 3.6: 3-layer architecture of a backend service.

3.3.2 Services

The backend consists of multiple independent services (microservices) as
depicted in figure 3.7.

Gateway

The Gateway service is the only front-facing component (visible for the
client) of the backend. It exposes a single interface for all the services behind
it. Requests are forwarded to the respective services based on the URLs. The
Gateway also determines the paths that are available only to authenticated
requests. It ensures that requests to those paths have a valid authentication
information before forwarding them to the corresponding services (otherwise
returns an error response immediately).

Authentication Service

This service is responsible for:

. registering users,

33

3. Design..............................

Figure 3.7: Backend services.

. handling the login flow,. issuing tokens,. providing tokens for accessing external services,. sending notifications to the client through an external service.

Activity Service

This service provides all sport-related information and handles the corre-
sponding requests. It subscribes to the Message queue to be able to
asynchronously communicate with the Sync service. This includes:

. persisting and providing information about synchronized activities,. logic for checking new achievements to unlock,. persisting and providing a list of achievements,. requesting activity synchronization.

34

.............................3.3. Backend

Sync Service

The Sync service subscribes to the Message queue and waits for requests
for activity synchronization. Then, it connects to Strava, performs the
synchronization, and publishes a response with the retrieved activities to the
Message queue.

Service Registry

The registry provides responses for service queries. It allows other services to
register with it and maps the service names to specific locations.

Message Queue

The Message queue allows the services to communicate asynchronously by
subscribing to it and enqueuing messages to named queues. A message is
persisted until a successful confirmation is received from the service handling
the message.

Database Service

The Database service provides access to relational databases for other
services. Each database is accessed by a single service.

3.3.3 External Systems

The backend works with two external systems, the Messaging service and
Strava, both depicted in figure 3.7.

The Messaging service is utilized to send asynchronous messages to the
mobile app. Specifically, a message is sent to the app once a check for new
achievements is completed. A natural choice for Android is the Firebase
Cloud Messaging solution. It is “a cross-platform messaging solution that
lets you reliably deliver messages at no cost.” [28] The app receives messages
through a service running in the background.

Strava is used for authentication and synchronization of sport activities.

35

3. Design..............................
Sequence diagram in figure 3.8 shows an approximation of the communica-

tion happening between different services when the client asks to synchronize
activities. It also illustrates notification of the client after the check for new
achievements to unlock is completed.

3.3.4 Entities

The backend works with database entities based on the domain analysis (see
figure 2.5). These entities are part of the database model in the Authenti-
cation service (simplified diagram is shown in figure 3.9):

.AuthUser—a single user with id,.UserExternalAuthData—authentication data for Strava account (or
other external service).

Database model for the Activity service contains the following entities
(depicted in simplified form in figure 3.10):

.Activity—a sport activity with attributes,.AchievementUnlock—an unlock of an achievement by a user,.ActivitySyncRequest—represents a single request for activity syn-
chronization.

Achievement definitions are not stored in a database, instead they are
loaded from a file and mapped to the entities listed below:

.AchievementDefinition—defines an achievement with conditions,.AchievementCondition—defines the aggregation function over activ-
ity attributes and the constraints,.AchievementConstraint—contains the comparison operator, an at-
tribute to look at and a value to compare it with.

The system does not work with an Athlete object but uses an attribute
with the name athleteId in appropriate places (same as the id of theAuthUser
entity).

36

.............................3.3. Backend

Figure 3.8: Sequence diagram—activity synchronization.

37

3. Design..............................

Figure 3.9: Database model—Authentication service.

Figure 3.10: Database model—Activity service.

38

.............................3.3. Backend

3.3.5 Authentication

As described above, all requests to the backend go through the Gateway.
Most requests must be authenticated, and that is the responsibility of the
Authentication service. However, to reduce load on this service and to
improve latency, the system should be able to determine if the request is
authenticated in the Gateway itself. This is best done by using a so-called
stateless authentication, meaning all authentication information is sent with
each request. That is why I decided to use JSON Web Tokens (JWT).
“JSON Web Tokens are an open, industry standard RFC 7519 method for
representing claims securely between two parties.” [29] These tokens allow
to securely encode authentication information (signed by a secret code and
containing an expiration date), and most importantly enable a stateless design
of the authentication system. Thus, the requests can be authenticated in the
Gateway just by looking at the included JWT and verifying the signature
and the expiration date. If the verification fails, the client is forced to go
through the OAuth login flow.

Since the backend needs to periodically retrieve data from Strava, it is
required to store the tokens for accessing the Strava API. When a synchro-
nization is due, the Sync service asks the Authentication service for an
access token for the Strava API. However, this token does expire after some
time: “Access tokens expire six hours after they are created, so they must be
refreshed in order for an application to maintain access to a user’s resources.
Applications use the refresh token from initial authentication to obtain new
access tokens.” [30] Therefore, the authentication service must also be able to
store the refresh token and request a new access token if necessary.

39

40

Chapter 4

Implementation

This chapter goes into detail regarding the implementation of both parts of
the application. The source code is available on the enclosed SD card.

4.1 Android App

For implementing the Android app, the official Android SDK is employed
[31]. The main arguments for its use are that it allows to access the newest
APIs, provides the most flexibility and is easy to use with Android Studio,
the official tool for developing Android apps from the Android team [31]. In
addition, there are several third-party libraries included in the project as well.
An alternative option would be to utilize some multi-platform framework,
which could simplify releasing the app for other platforms (iOS). But since I
have spent a lot of time working with the Android SDK, this was a clear
choice.

I also decided to use Kotlin as a development language in all of the app’s
components, as it is the recommended choice for Android development at the
time of writing this thesis [32]. It is a modern language with many useful
features and it is fully interoperable with Java, which allows to use existing
Android libraries [33].

The minimum SDK version for this project is 21 (Lollipop, 5.0) and the
target SDK is 28 (Pie, 9).

41

4. Implementation..........................
4.1.1 Structure

The Android project is split into three main modules. This avoids unnecessary
recompilation of modules that did not change and enables parallel compilation.

Domain

This module is a pure Java library—although it contains Kotlin code thanks to
the interoperability—without any dependencies on the Android components.
It defines interfaces that are implemented in the data module. There are
also models representing the data displayed in the mobile app module. In
terms of the architecture depicted in figure 3.2, this module only covers the
contracts of the Repository component.

Data

The data module provides implementation for the interfaces in the domain
module. It is an Android library, but does not contain any UI elements. The
covered components are Repository, Local Storage and Remote.

Mobile App

This module defines the layouts, and implements the functionality of the
screens discussed in the Design chapter. It covers the View and the ViewModel
architecture components.

4.1.2 Libraries

There are multiple useful libraries included in the project. Table 4.1 lists
some of them.

4.1.3 User Interface

Every screen from the design phase is mapped to a Fragment [42]. A logical
set of Fragments is displayed inside an Activity [43]. Both Fragments and
Activities require ViewModels.

42

...........................4.1. Android App

Library name Description
Android
Navigation

Navigation between app’s components [34].

Android Room Abstraction over database access [35].
Retrofit HTTP client [36].
RxJava Java VM implementation of Reactive Extensions [37].
RxKotlin RxJava bindings for Kotlin [38].
Dagger Dependency injection framework [39].
ThreeTenBP Time library, replacement for Java APIs [40].
Timber Logger for Android [41].

Table 4.1: Libraries in the Android project.

4.1.4 ViewModel

The Android framework provides an implementation of a ViewModel, which
is aware of the lifecycle of the UI components [44]. As such, it solves common
issues with handling configuration changes. All of the ViewModels are injected
into Fragments and Activities by the means of dependency injection provided
by the Dagger library [39].

4.1.5 Models

Models represent data displayed in Views. All persisted entities are mapped
to their corresponding models (see figure 3.2.4). In addition to those, there
are other notable models.

.AuthData—holds authentication data, including the tokens..AuthEvent—information about an authentication event in the app..UnlockWithAchievement—an achievement unlock joined together
with an achievement definition.

4.1.6 Local Storage

There are two local persistence solutions used by the app. The first one—
database—is used for persisting Achievements andAchievementUnlocks.
The second one is a key-value persistent storage abstracted by the Shared-
Preferences interface from the Android components [45].

43

4. Implementation..........................
4.1.7 Caching

Even though today’s mobile network infrastructure might suggest otherwise, it
is vital for a modern mobile app to support caching of data that it downloads
from its remote sources. Connection might be flaky in some places, and
caching also helps reducing performance demands on the backend. The
strategy I implemented works with constants, which specify the duration
after which data are considered to be “expired” and required to be fetched
from the remote source again. The user can always refresh the data manually,
and the constants can be fine-tuned in the future.

4.1.8 Authentication

The authentication flow of the app requires redirection to Strava and then
to the backend. I wanted the mobile client to handle authentication without
opening the browser. The user can authorize access for this app directly in
the Strava app if it is installed on the device [30]. The app must send an
Intent with a mobile-specific URI to open the Strava app [46]. After the
user’s confirmation, the Strava app also sends an Intent, which is handled by
the mobile client by registering a special Intent Filter [47]. Finally, the result
is forwarded through the API to the backend to complete the authentication.

Every OAuth request is stored in a cookie, therefore, the client must be
able to manage cookies. This is implemented by using an Interceptor for the
authentication API [48].

Included in the final response of the login flow are the access and request
tokens. Because the access token is set to expire in 6 hours, it needs to be
refreshed with the help of the refresh token after this period. The logic for
refreshing the access token is implemented in an Authenticator [49].

The refresh token also has a limited validity for 30 days, even though a
new refresh token is issued after each successful refresh request. If it comes
to the case when both tokens are invalid, the app opens the login screen and
prompts the user to reauthenticate with Strava.

4.2 Backend

The framework used for all services in the backend is Spring Boot, which is
based on the Spring platform. “The Spring Framework provides a comprehen-
sive programming and configuration model for modern Java-based enterprise
applications - on any kind of deployment platform.” [50]

44

.............................4.2. Backend

It is a framework built on top of the Java Enterprise Edition (Java EE)
platform consisting of different modules. The core technologies include
dependency injection, resource handling, validation and others. The key part
of Spring is Spring Web MVC, which serves the same purpose as other MVC
(Model–View–Controller) frameworks. “Spring Web MVC is the original
web framework built on the Servlet API and has been included in the Spring
Framework from the very beginning.. . . it is more commonly known as ‘Spring
MVC’.” [51]

Spring Boot then makes it much easier to get started with Spring. “Spring
Boot makes it easy to create stand-alone, production-grade Spring based
Applications that you can ‘just run’. We take an opinionated view of the
Spring platform and third-party libraries so you can get started with minimum
fuss. Most Spring Boot applications need very little Spring configuration.” [52]
It has the ability to embed a servlet container (like Apache Tomcat) directly,
so it can be deployed as a standard JAR file [53]. This is useful, as an example,
to create a standalone container which can be deployed on a cluster.

Another important part of Spring is Spring Cloud, which provides many
components useful for the microservices architecture. “Spring Cloud provides
tools for developers to quickly build some of the common patterns in distributed
systems (e.g. configuration management, service discovery, circuit breakers,
intelligent routing, micro-proxy, control bus, one-time tokens, global locks,
leadership election, distributed sessions, cluster state).” [54]

4.2.1 Structure

The backend uses Maven as a project management tool [55]. Each service in
the backend is implemented as a single module while sharing the same parent
with other modules. The parent defines dependencies required by all services.
Also, some functionality is required by some, but not all, services. For that
reason, there are also multiple modules not bound to a specific service that
can be shared. Figure 4.1 depicts this structure.

4.2.2 Libraries

Apart from the basic Spring Boot libraries, the backend uses dependencies
from the Spring Cloud family (see Table 4.2 for examples).

45

4. Implementation..........................

Figure 4.1: Backend project structure.

Library name Description
Ribbon Client-side load balancer. [56].
Sleuth Distributed tracing [57].
Zuul HTTP client [58].
OpenFeign Declarative REST Client [59].

Table 4.2: Spring Cloud libraries.

4.2.3 Authentication

The backend uses OAuth 2.0 for authentication. The mechanism is imple-
mented in the Spring Security package [60]. The Authentication service
uses this package in the client mode. This requires some basic configuration
including these parameters:

. clientId—the identifier by which the OAuth provider identifies the client
(provided by Strava),. clientSecret—a secret required by the OAuth provider,. scope—the scope of data which the client can access.

On Strava, there are scopes specific to activity data, the one required by

46

.............................4.2. Backend

the backend is activity:read_all—allows access to all activities on the athlete’s
profile, including privacy zone data [30].

4.2.4 Activity Synchronization

The synchronization of activities is not handled immediately after a new
request from the client is received on the Activity service. Instead, a new
instance of the ActivitySyncRequest is created and put to the Message
queue. The Sync service is subscribed to the queue, and when a new
request arrives, it performs the synchronization and puts a new response to
the queue along with the result and retrieved activities. Activity service
then dequeues this response and persists the activities to the database. This
way, the Activity service is isolated from Strava.

4.2.5 Achievements

I wanted the system for managing achievements to be flexible and allow
having the definitions separated from the application code. The entities are
designed in a way that supports creating various achievements with multiple
conditions. It is easy to define achievements in a file, parse the file and build
the entities. I decided to describe the achievements in a JSON file, which can
be supplied from a local disk or a separate configuration service if needed.
JSON is a lightweight format which is easy to parse and read [25]. Below
is an example of a JSON-defined achievement for cycling as the sport type,
week time period, with the sum of the distances of all activities being at least
30 kilometers.
{

" key " : " ride_dist_30_km_tp " ,
" spor t " : " Ride " ,
" t imePer iods " : ["Week "] ,
" c ond i t i on s " : [

{
" func t i on " : "Sum" ,
" c on s t r a i n t s " : [

{
" op " : "Ge" ,
" param " : " d i s t ance " ,
" va lue " : 30000 .0

}
]

}
]

}

47

4. Implementation..........................
Since all the necessary activity data for unlocking achievements are stored

in the database, a straightforward way to perform the check is to run a series
of database queries. The queries must be constructed dynamically from the
entities, and that is a task for the AchievementChecker class. The queries
follow the basic idea below (pseudo-SQL code):

SELECT [expression in GROUP BY] FROM Activity
WHERE [specific athlete, sport, start and end dates]
GROUP BY [start date or ‘1’]
HAVING [aggregation function(attribute) operator value]

The result of the query must contain at least one row in the case of
achievements without a minimum number of days specified. Otherwise, there
must be at least days rows returned.

Activities are, if the days attribute is defined, grouped by a start date to
run the aggregate function on all activities in a single day (since the constraint
in the HAVING clause must be satisfied considering all activities in that day
as a group, usually taking a sum of their attributes). If the days attribute is
not defined, the activities are grouped by ‘1’ which effectively makes every
activity a single group. The result of the aggregate function must then satisfy
the comparison in the HAVING clause.

4.2.6 Communication between Services

Since clients can only access the Gateway from outside the cluster, there
can be internal paths available only for internal service-to-service commu-
nication without the requirement for authentication. That is exactly what
I implemented by adding an ignored pattern in the Zuul configuration for
paths containing the text “protected” [61]. The paths below are part of the
internal API.

GET /protected/external/token/{athleteId}. This command is imple-
mented in the Authentication service and called from the Sync service
to request Strava token for athlete with the specified id.

POST /protected/messaging/notify. Requests are being performed on
this path to notify an athlete (specified in the body of the request) of an
achievements check completion. Also implemented in the Authentication
service, the path is used by the Activity service.

48

.............................4.2. Backend

The actual implementation of communication between services is enabled by
Feign, which makes it easy to define the communication by creating interfaces
describing the paths, methods and parameters [59].

4.2.7 Deployment

All services in the system can be deployed independently. A robust way to
achieve that is to build a container for each service and deploy it on a cluster.
“A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing
environment to another.” [62]

I worked with three deployment scenarios while creating the system. To
quickly test new features during development, I prepared configuration for
each service in my development tool, which was IntelliJ IDEA [63]. I did not
use containerization here. Eureka, part of the Spring Cloud Netflix family,
served as a local Service registry [64].

The other two deployments were based on Docker containers inside a cluster.
Kubernetes was chosen as the cluster technology. “Kubernetes (K8s) is an
open-source system for automating deployment, scaling, and management of
containerized applications.” [65]

Since Kubernetes supports service discovery out-of-the-box, there was no
need to have a dedicated Service registry running.

In order to have a working cluster on my local machine, I used Minikube,
which enables running a local Kubernetes cluster [66]. A PostgreSQL database
was based on a Docker image running alongside other services in the cluster
[67].

The production deployment of the backend was done onGoogle Cloud, specif-
ically, the Kubernetes Engine. “Kubernetes Engine is a managed, production-
ready environment for deploying containerized applications.” [68]

Database solution for production was based on Cloud SQL (PostgreSQL
option), also part of Google Cloud, which runs outside the Kubernetes Engine
[69]. The containers connected to the database through the Cloud SQL
Proxy Docker image [70]. Message queue is based on ActiveMQ [71]. The
configuration pulls a Docker image from the Docker Hub registry [72].

Deployment configuration can be found inside the kubernetes directory in
the parent-spring-service module for both Minikube and Google Cloud.

Figure 4.2 shows the production deployment with the mobile app, backend

49

4. Implementation..........................

Figure 4.2: Production deployment.

and database in a single diagram. There is the Gateway as the front-facing
component of the cluster. Other services are abstracted under a single Service
component in the diagram. The SQL proxy then shows the communication
with the Cloud SQL solution.

50

Chapter 5

Testing

This chapter lists and describes the test scenarios for the system and their
expected results. All tests passed successfully.

5.1 Android App Testing

The Android app uses dependency injection, so it is possible to provide
implementation of components specifically designed for testing. As an ex-
ample, to make the tests not dependent on the backend and its API, mock
implementations of the Remote components were created. They simulate
network behavior and return identical responses to the ones coming from the
real backend. However, the tests can initialize the responses with mock data.
These mock components and other testing utilities are in a separate module
testutils.

5.1.1 End-to-end Tests

This series of tests validates a proper behavior of all modules in the app from
the user’s point of view. It tests the screens, simulates input and validates out-
put in the UI. Mock Remotes and database are used. The technology providing
user interface testing capability for Android is called Espresso [73]. Tests
can run on real or virtual Android devices. The tests described below can be
found in the app module in package androidTest.java.cz.cvut.masters.screen.

Dashboard—First Run. In this scenario, mock Remotes are set up with
initial data as if a new account was created for the user. The dashboard
screen is launched. All text elements are expected to have their initial values.

51

5. Testing
Settings Button. The dashboard screen is opened and the settings button
is clicked. This should open the settings screen.

Navigate to Achievements Screen. The dashboard screen is opened and
the achievements button in the bottom navigation bar is clicked. Unlocked
achievements screen should now be displayed.

Dashboard—Refresh. Mock Remotes are set up with initial data. All UI
elements should contain initial values. Then, the Remotes are updated with
some artificial data. The refresh button is clicked. The UI elements are
expected to contain the updated values.

Dashboard—Sync Success. Mock Remotes are set up with initial data.
Assertions on the initial values are performed, this also includes checking that
the synchronization state is Never. The Remote for achievements is updated
with a Started state and then the sync button is clicked. The text with the
synchronization state should now translate to Started. Finally, the Remote
state is changed to Completed. Refreshing the state should reflect that.

Dashboard—Sync Error. Initial assertions are performed normally. The
Remote state is set to Started and sync button click is performed. The
synchronization state should translate to Started now. Then, the state in the
Remote is changed to Error, and the refresh button is clicked. The text with
synchronization state should inform about the error.

Achievements Screen—No Achievements. The test prepares initial data
in the achievements Remote first. Then it navigates to the achievements
screen and checks that “no achievements” message is displayed.

Achievements Screen—Filtering. There are multiple test scenarios to check
all combinations of filters for time periods and sports. First, achievement
unlocks for all those combinations are added to the achievements Remote.
Each test then clicks on one time period filter and one sport filter. The
expected result is that only activities satisfying the filter conditions are
displayed in the list.

Achievement Unlock Detail Screen. The Remote is set up with two unlocks
of achievements. In the scenario, a click is performed on each of those
achievement unlocks in the list. This should open the screen with details and
display correct values in corresponding UI elements.

52

......................... 5.2. Backend Testing

Dashboard and Achievements Screen. This test scenario combines multiple
actions and navigates between the dashboard and the screen with unlocked
achievements. Mock data are prepared such that invoking activity sync
by clicking the button on the dashboard and then clicking on the refresh
button should update the number of unlocked achievements. Also, the new
achievements should be displayed on the achievements screen.

5.2 Backend Testing

Since each microservice is in a separate module, I created a few test modules
containing functionality that can be reused in multiple microservices.

5.2.1 API Tests

Test scenarios for the API cover the Controllers in microservices. These tests
work with a mocked Service layer and verify HTTP responses including the
status and JSON data. The Spring Security package provides functionality
for running tests with a mock user to fulfill authentication requirements
of the API [74]. To make the tests efficient, a special annotation Web-
MvcTest was added, which instructs Spring to load only the Controller
layer [75]. The tests are located in corresponding microservices in package
test.java.cz.cvut.masters.service.{serviceName}.controller.

5.2.2 Unlocking Achievements

Tests that validate logic for unlocking achievements cover the achievements
module. Because the AchievementChecker class builds database queries and
works with persisted entities, the test class is annotated with DataJpaTest,
which enables injecting a special EntityManager for testing (utilized for
persisting test data) [76]. The tests also work with a Clock object providing
a fixed system time, so they can be run independently of the local time in
the testing environment [77].

There are two test classes for testing both achievements that are defined
for a minimum amount of days (day-based) and achievements considering
activities across a time period (time period-based). Every achievement is a
combination of multiple attributes, conditions and constraints. The tests cover
a subset of all possible combinations. Both classes, DaysAchievementsTest
and TimePeriodAchievementsTest, are available in the activity-service module
in package test.java.cz.cvut.masters.service.activity.achievement.

53

5. Testing
5.2.3 Integration Tests

The tests in the AchievementServiceIntegrationTest class use the real achieve-
ments Service layer as well as the unlocked achievements Repository. The
interface for communicating with the Authentication service is mocked,
and responses always return 200 OK status. To verify correct behavior, the
scenarios insert some achievements and activities with various attributes
and check that the Service returns correct data. Both tests and configura-
tion can be found in the test package of the activity-service module under
cz.cvut.masters.activity.integration.

5.3 Manual Testing

In order to test authentication through Strava, I prepared a few scenarios
that must be performed on a mobile device by a tester manually while using
a real Strava account.

Strava login success—app. This scenario requires that the official Strava
app with version 75.0 or later is installed on the device. First, the user
launches the app and clicks on the Strava login button. The Strava app opens
and prompts the user to authorize this app to connect to Strava. The user
clicks on the Authorize button. To successfully complete the test, the login
flow must finish and display the dashboard.

Strava login success—web. In this scenario, it is required that the Strava
app is not available on the device. The scenario is identical to the preceding
one, except that the Strava authorization screen opens in a browser.

Strava login unauthorized—app. Again, the Strava app on the device is
required for this test. The user goes through the usual flow and is redirected
to the Strava authorization screen. Here, they decide not to authorize this
app for connection to Strava and click the Cancel button. The expected
result of this action is that the user is redirected back to the login screen and
an error message is displayed. The login can be repeated again.

Strava login unauthorized—web. The Strava app must not be installed on
the mobile device. This scenario is similar to the one above, except that the
Cancel button is clicked in a browser.

54

........................... 5.4. Performance

5.4 Performance

To test the performance of the system under load, and to demonstrate the
scalability of the microservices architecture, I prepared a special testing
scenario. The backend was deployed on a local machine in the Minikube
Kubernetes cluster. The machine had the following configuration:

. CPU: Intel Core i7-6700HQ (2.60 GHz),. RAM: 16 GB,. Disk: NVMe Samsung MZVPV512,.Operating system: Windows 10 Pro.

The Minikube virtual machine had available 4 GB of RAM and 2 virtual
processors. It ran on the Hyper-V hypervisor for optimal performance [78].

The deployment followed the description provided in 4.2.7. The only
difference from an usual testing environment were the resource limits for the
Activity service. I placed a limit of 0.25 CPU for its container to simulate
limited computational resources and to then allow scaling up the number of
replicas in order to increase performance (horizontal scaling) [79].

The testing scenario involved performing HTTP GET requests on the
/activities/data path by a number of users. This path is served by the
Activity service. The scenario was implemented in Apache JMeter, which
is a “100% pure Java application designed to load test functional behavior
and measure performance.” [80]

Since the target API path requires authentication, the scenario starts by
sending a login request. Just for testing purposes, I implemented password-
based authentication. This authentication option returns the same response
as the OAuth authentication flow (including an access token) after a successful
login. So, the scenario first performs the login with a test user account and
extracts the access token. This request is only performed once, and subsequent
requests include the token. The scenario in question was set up with these
basic parameters:

. number of threads (users): 50,. loop count: 20.

So, in total, there were 1000 request sent to the backend. As previously
described, requests are received on the Gateway, then forwarded to the

55

5. Testing
Activity service. Since there can be multiple replicas of a single container,
Kubernetes defines a special object called Service, which abstracts access to
the underlying Pods [81]. Pod contains the specific containers [82]. For this
backend, it means a single replica per Pod. Kubernetes automatically load
balances requests between different Pods behind a single Service. In short,
this means that the incoming requests are distributed across all the replicas
of the Activity service.

The test scenario with the parameters described above was performed on
the cluster with 1, 2, and 4 replicas of theActivity service. Several warm-up
runs were performed first. For each of the requests, the analyzed metric was
latency, which measures the time “from just before sending the request to just
after the first response has been received.” [83] The results are summarized in
table 5.1. The graph in figure 5.1 shows the cumulative average of the latency
over time for different number of replicas.

Number of replicas Average latency
1 967 ms
2 591 ms
4 318 ms

Table 5.1: Performance testing results.

0

100

200

300

400

500

600

700

800

900

1000

1100

1 101 201 301 401 501 601 701 801 901

Ti
m

e
(m

s)

Request #

Latency - cumulative average

1 replica 2 replicas 4 replicas

Figure 5.1: Latency for different number of service instances.

The results show that the system can be efficiently scaled up by increasing
the number of instances of the microservices.

56

Chapter 6

Conclusion

In the first chapter, I stated the goal of creating an application that provides
functionality envisioned in 1.2. I started by analyzing similar apps on the
market. Based on that, I placed some criteria on my solution. I defined
the requirements and identified entities in the domain. The Design chapter
showed three major parts of the system, namely the mobile app, backend and
database. I discussed the architecture choices and various components for
the mobile app and the backend. Then, I created the app and provided some
implementation details. The mobile app uses modern technologies and utilizes
caching of data. The backend consists of independent services. I worked
with multiple deployment environments, those were detailed as well. Finally,
the system was tested in a number of scenarios, and I also demonstrated its
scalability.

All three main requirements defined in 2.1.4 have been addressed.

Provide a clear user interface. As evident both from the Design chapter
and the implemented mobile app, the final user interface does satisfy this
requirement.

Focus on periodic achievements. Achievements can be unlocked in four
different time periods. There are weekly, monthly, annual and all-time
achievements available.

Consider multiple activity attributes for a single achievement. The system
for defining achievements is flexible and allows combining multiple attributes
of a sport activity. See FR-09 with a list of achievements that were defined
for this thesis.

57

6. Conclusion............................

(a) : Dashboard. (b) : Unlocked achievements.

Figure 6.1: Mobile application—screenshot.

6.1 Implemented Application

Sportivator runs on Android, and it can be distributed through the Google
Play store [84]. To make the sign-up process simple, users are prompted
to log in with their Strava account. Once they grant access to their data,
they are presented with the main screen of the app (dashboard). Through a
dedicated button, users can request synchronization of their Strava activities.
After those activities are imported and processed, Sportivator checks for
achievements that can be unlocked by the imported activities. The number
and the complete list of unlocked achievements for each time period are
displayed. When new activities are recorded on Strava, users can repeat the
process by requesting a new activity sync. Figure 6.1 shows a screenshot of
the main screen of the mobile app.

58

...........................6.2. Future Work

6.2 Future Work

While the created application is a fully-functional product, there are ways
in which it could be further improved. It should be possible, thanks to the
design considerations, to add another sport activity data providers to the
app.

The system works with metric units, but support for imperial system is
something that should be included. This goes hand in hand with different
time zones, and the fact that week might start on different days in different
countries. The app should probably recognize the location of the user in
the world, and based on that, adjust when the time periods for unlocking
achievements begin. It requires additional planning for situations like traveling
between time zones. This might also include support for user personalization.
Sportivator can be easily translated to other languages as all text is kept
outside the application code.

To make the achievements more appealing, additional information could be
displayed to the user. As an example, the number of times an achievement
was unlocked might be included in its detail. It might be useful to show the
complete list of achievements so the user knows what to aim for. If it can be
determined which activities contributed to unlocking an achievement, they
could be listed in the unlock detail.

When the athlete updates one of their past activities, the app does not
currently reflect that. Also when there are activities imported to Strava with
a start date before the date of the last successful synchronization, they are not
imported. Therefore, in such cases, there could be a strategy implemented for
resynchronization. The list of achievements for this thesis was created mostly
to showcase the capabilities of the system. The door is open for defining
additional ones.

59

60

Bibliography

[1] Strava Training: Track Running, Cycling & Swimming – Apps on Google
Play. [online], [Accessed: 2019-04-28]. Available from: https://play.
google.com/store/apps/details?id=com.strava

[2] Matched Runs – Strava Support. [online], [Accessed: 2019-04-28]. Avail-
able from: https://support.strava.com/hc/article_attachments/
360005933332/IMG_0903.PNG

[3] Welcome to VeloViewer! [online], [Accessed: 2019-04-
28]. Available from: https://cf.veloviewer.com/img/
veloviewer-strava-summary-homepage.png

[4] Garmin ConnectTM– Apps on Google Play. [online], [Accessed: 2019-04-
28]. Available from: https://play.google.com/store/apps/details?
id=com.garmin.android.apps.connectmobile

[5] Guide to app architecture | Android Developers. [online], [Accessed:
2019-05-01]. Available from: https://developer.android.com/topic/
libraries/architecture/images/network-bound-resource.png

[6] Strava Developers. [online], [Accessed: 2019-04-23]. Available from:
https://developers.strava.com/

[7] Strava Apps – There’s one for every athlete. [online], [Accessed: 2019-
04-23]. Available from: https://www.strava.com/apps

[8] Strava. [online], [Accessed: 2019-05-13]. Available from: https://www.
strava.com/

[9] What’s a segment? – Strava Support. [online], [Accessed: 2019-04-28].
Available from: https://support.strava.com/hc/en-us/articles/
216917137-What-s-a-segment-

61

https://play.google.com/store/apps/details?id=com.strava
https://play.google.com/store/apps/details?id=com.strava
https://support.strava.com/hc/article_attachments/360005933332/IMG_0903.PNG
https://support.strava.com/hc/article_attachments/360005933332/IMG_0903.PNG
https://cf.veloviewer.com/img/veloviewer-strava-summary-homepage.png
https://cf.veloviewer.com/img/veloviewer-strava-summary-homepage.png
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://developer.android.com/topic/libraries/architecture/images/network-bound-resource.png
https://developer.android.com/topic/libraries/architecture/images/network-bound-resource.png
https://developers.strava.com/
https://www.strava.com/apps
https://www.strava.com/
https://www.strava.com/
https://support.strava.com/hc/en-us/articles/216917137-What-s-a-segment-
https://support.strava.com/hc/en-us/articles/216917137-What-s-a-segment-

Bibliography
[10] Strava Challenges – Strava Support. [online], [Accessed: 2019-04-28].

Available from: https://support.strava.com/hc/en-us/articles/
216919177-Strava-Challenges

[11] Matched Runs – Strava Support. [online], [Accessed: 2019-04-28].
Available from: https://support.strava.com/hc/en-us/articles/
216918597-Matched-Runs

[12] About | VeloViewer. [online], [Accessed: 2019-04-28]. Available from:
https://blog.veloviewer.com/about/

[13] rubiTrack. [online], [Accessed: 2019-05-18]. Available from: https://
www.rubitrack.com/index.html

[14] rubiTrack. [online], [Accessed: 2019-05-18]. Available from: https://
www.rubitrack.com/features.html

[15] WeFitter. [online], [Accessed: 2019-05-18]. Available from: https://
wefitter.com/

[16] Corporate Wellness – WeFitter. [online], [Accessed: 2019-05-18]. Available
from: https://wefitter.com/solutions/corporate-wellness/

[17] WeFitter Success Cases. [online], [Accessed: 2019-05-18]. Available from:
https://wefitter.com/customer-success/

[18] Wellness Cities. [online], [Accessed: 2019-05-18]. Available from: http:
//wellnesscities.eu/

[19] Garmin Connect. [online], [Accessed: 2019-04-28]. Available from: https:
//connect.garmin.com/

[20] Garmin Connect Badge Achievements | Garmin Support. [online], [Ac-
cessed: 2019-04-28]. Available from: https://support.garmin.com/
en-US/?faq=6pECo6UIFn7ergw8kNmfu9

[21] Lethbridge, T.; Laganière, R. Object-oriented software engineering.
McGraw-Hill, second edition, 2005, ISBN 9780077109080.

[22] OAuth 2.0 – OAuth. [online], [Accessed: 2019-04-15]. Available from:
https://oauth.net/2/

[23] Guide to app architecture | Android Developers. [online], [Accessed: 2019-
04-14]. Available from: https://developer.android.com/jetpack/
docs/guide

[24] Nurkiewicz, T.; Christensen, B. Reactive programming with RxJava.
O’Reilly Media, first edition, 2016, ISBN 9781491931653.

[25] JSON. [online], [Accessed: 2019-05-02]. Available from: https://www.
json.org/

62

https://support.strava.com/hc/en-us/articles/216919177-Strava-Challenges
https://support.strava.com/hc/en-us/articles/216919177-Strava-Challenges
https://support.strava.com/hc/en-us/articles/216918597-Matched-Runs
https://support.strava.com/hc/en-us/articles/216918597-Matched-Runs
https://blog.veloviewer.com/about/
https://www.rubitrack.com/index.html
https://www.rubitrack.com/index.html
https://www.rubitrack.com/features.html
https://www.rubitrack.com/features.html
https://wefitter.com/
https://wefitter.com/
https://wefitter.com/solutions/corporate-wellness/
https://wefitter.com/customer-success/
http://wellnesscities.eu/
http://wellnesscities.eu/
https://connect.garmin.com/
https://connect.garmin.com/
https://support.garmin.com/en-US/?faq=6pECo6UIFn7ergw8kNmfu9
https://support.garmin.com/en-US/?faq=6pECo6UIFn7ergw8kNmfu9
https://oauth.net/2/
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://www.json.org/
https://www.json.org/

.............................Bibliography

[26] Newman, S. Building Microservices. O’Reilly Media, first edition, 2015,
ISBN 9781491950357.

[27] Microservices architecture style – Azure Application Architec-
ture Guide. [online], [Accessed: 2019-01-10]. Available from:
https://docs.microsoft.com/en-us/azure/architecture/guide/
architecture-styles/microservices

[28] Firebase Cloud Messaging. [online], [Accessed: 2019-05-13]. Available
from: https://firebase.google.com/docs/cloud-messaging

[29] JSON Web Tokens – jwt.io. [online], [Accessed: 2019-04-15]. Available
from: https://jwt.io/

[30] Strava Developers. [online], [Accessed: 2019-04-15]. Available from:
https://developers.strava.com/docs/authentication/

[31] Download Android Studio and SDK tools. [online], [Accessed: 2019-05-
01]. Available from: https://developer.android.com/studio

[32] Kotlin and Android. [online], [Accessed: 2019-04-04]. Available from:
https://developer.android.com/kotlin

[33] Kotlin for Android – Kotlin Programming Language. [online], [Ac-
cessed: 2019-04-04]. Available from: https://kotlinlang.org/docs/
reference/android-overview.html

[34] Navigation | Android Developers. [online], [Accessed: 2019-05-02]. Avail-
able from: https://developer.android.com/jetpack/androidx/
releases/navigation

[35] Room Persistence Library | Android Developers. [online], [Accessed:
2019-05-02]. Available from: https://developer.android.com/topic/
libraries/architecture/room

[36] Retrofit. [online], [Accessed: 2019-05-02]. Available from: https://
square.github.io/retrofit/

[37] ReactiveX/RxJava. [online], [Accessed: 2019-05-02]. Available from:
https://github.com/ReactiveX/RxJava

[38] ReactiveX/RxKotlin. [online], [Accessed: 2019-05-02]. Available from:
https://github.com/ReactiveX/RxKotlin

[39] Dagger. [online], [Accessed: 2019-05-02]. Available from: https://
google.github.io/dagger/

[40] JakeWharton/ThreeTenABP. [online], [Accessed: 2019-05-02]. Available
from: https://github.com/JakeWharton/ThreeTenABP

[41] JakeWharton/timber. [online], [Accessed: 2019-05-02]. Available from:
https://github.com/JakeWharton/timber

63

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://firebase.google.com/docs/cloud-messaging
https://jwt.io/
https://developers.strava.com/docs/authentication/
https://developer.android.com/studio
https://developer.android.com/kotlin
https://kotlinlang.org/docs/reference/android-overview.html
https://kotlinlang.org/docs/reference/android-overview.html
https://developer.android.com/jetpack/androidx/releases/navigation
https://developer.android.com/jetpack/androidx/releases/navigation
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/topic/libraries/architecture/room
https://square.github.io/retrofit/
https://square.github.io/retrofit/
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxKotlin
https://google.github.io/dagger/
https://google.github.io/dagger/
https://github.com/JakeWharton/ThreeTenABP
https://github.com/JakeWharton/timber

Bibliography
[42] Fragment | Android Developers. [online], [Accessed: 2019-05-02]. Avail-

able from: https://developer.android.com/jetpack/androidx/
releases/fragment

[43] Activity | Android Developers. [online], [Accessed: 2019-05-02]. Avail-
able from: https://developer.android.com/reference/android/
app/Activity

[44] ViewModel Overview | Android Developers. [online], [Accessed: 2019-
05-02]. Available from: https://developer.android.com/topic/
libraries/architecture/viewmodel

[45] SharedPreferences | Android Developers. [online], [Accessed: 2019-
05-02]. Available from: https://developer.android.com/reference/
android/content/SharedPreferences

[46] Intent | Android Developers. [online], [Accessed: 2019-05-02]. Avail-
able from: https://developer.android.com/reference/android/
content/Intent

[47] Intents and Intent Filters | Android Developers. [online], [Accessed:
2019-05-02]. Available from: https://developer.android.com/guide/
components/intents-filters

[48] Interceptors. [online], [Accessed: 2019-05-02]. Available from: https:
//github.com/square/okhttp/wiki/Interceptors

[49] Authenticator. [online], [Accessed: 2019-05-18]. Available from:
https://square.github.io/okhttp/3.x/okhttp/okhttp3/
Authenticator.html

[50] Spring Framework. [online], [Accessed: 2019-04-04]. Available from:
https://spring.io/projects/spring-framework

[51] Web on Servlet Stack. [online], [Accessed: 2019-04-04]. Avail-
able from: https://docs.spring.io/spring/docs/current/
spring-framework-reference/web.html

[52] Spring Boot. [online], [Accessed: 2019-04-04]. Available from: https:
//spring.io/projects/spring-boot

[53] Apache Tomcat. [online], [Accessed: 2019-05-02]. Available from: http:
//tomcat.apache.org/

[54] Spring Cloud. [online], [Accessed: 2019-04-04]. Available from: https:
//spring.io/projects/spring-cloud

[55] Maven – Welcome to Apache Maven. [online], [Accessed: 2019-05-02].
Available from: https://maven.apache.org/

64

https://developer.android.com/jetpack/androidx/releases/fragment
https://developer.android.com/jetpack/androidx/releases/fragment
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://github.com/square/okhttp/wiki/Interceptors
https://github.com/square/okhttp/wiki/Interceptors
https://square.github.io/okhttp/3.x/okhttp/okhttp3/Authenticator.html
https://square.github.io/okhttp/3.x/okhttp/okhttp3/Authenticator.html
https://spring.io/projects/spring-framework
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
http://tomcat.apache.org/
http://tomcat.apache.org/
https://spring.io/projects/spring-cloud
https://spring.io/projects/spring-cloud
https://maven.apache.org/

.............................Bibliography

[56] Client Side Load Balancer: Ribbon. [online], [Accessed: 2019-05-02].
Available from: https://cloud.spring.io/spring-cloud-netflix/
multi/multi_spring-cloud-ribbon.html

[57] Spring Cloud Sleuth. [online], [Accessed: 2019-05-02]. Available from:
https://spring.io/projects/spring-cloud-sleuth

[58] Netflix/zuul. [online], [Accessed: 2019-05-02]. Available from: https:
//github.com/Netflix/zuul

[59] Spring Cloud OpenFeign. [online], [Accessed: 2019-05-02]. Available from:
https://spring.io/projects/spring-cloud-openfeign

[60] Spring Security. [online], [Accessed: 2019-05-02]. Available from: https:
//spring.io/projects/spring-security

[61] Router and Filter: Zuul. [online], [Accessed: 2019-05-18].
Available from: https://cloud.spring.io/spring-cloud-netflix/
multi/multi__router_and_filter_zuul.html

[62] Docker. [online], [Accessed: 2019-05-16]. Available from: https://www.
docker.com/resources/what-container

[63] IntelliJ IDEA. [online], [Accessed: 2019-05-16]. Available from: https:
//www.jetbrains.com/idea/

[64] Spring Cloud Netflix. [online], [Accessed: 2019-05-16]. Available from:
https://spring.io/projects/spring-cloud-netflix

[65] Kubernetes. [online], [Accessed: 2019-05-16]. Available from: https:
//kubernetes.io/

[66] Running Kubernetes Locally via Minikube. [online], [Accessed: 2019-05-
16]. Available from: https://kubernetes.io/docs/setup/minikube/

[67] postgres – Docker Hub. [online], [Accessed: 2019-05-16]. Available from:
https://hub.docker.com/_/postgres

[68] Google Kubernetes Engine. [online], [Accessed: 2019-05-16]. Available
from: https://cloud.google.com/kubernetes-engine/

[69] Cloud SQL. [online], [Accessed: 2019-05-16]. Available from: https:
//cloud.google.com/sql/

[70] Connecting from Google Kubernetes Engine. [online], [Accessed: 2019-
05-16]. Available from: https://cloud.google.com/sql/docs/mysql/
connect-kubernetes-engine

[71] ActiveMQ. [online], [Accessed: 2019-05-16]. Available from: https://
activemq.apache.org/

[72] rmohr/activemq – Docker Hub. [online], [Accessed: 2019-05-16]. Available
from: https://hub.docker.com/r/rmohr/activemq/

65

https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-ribbon.html
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-ribbon.html
https://spring.io/projects/spring-cloud-sleuth
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://spring.io/projects/spring-cloud-openfeign
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://cloud.spring.io/spring-cloud-netflix/multi/multi__router_and_filter_zuul.html
https://cloud.spring.io/spring-cloud-netflix/multi/multi__router_and_filter_zuul.html
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://spring.io/projects/spring-cloud-netflix
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/docs/setup/minikube/
https://hub.docker.com/_/postgres
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/sql/
https://cloud.google.com/sql/
https://cloud.google.com/sql/docs/mysql/connect-kubernetes-engine
https://cloud.google.com/sql/docs/mysql/connect-kubernetes-engine
https://activemq.apache.org/
https://activemq.apache.org/
https://hub.docker.com/r/rmohr/activemq/

Bibliography
[73] Espresso. [online], [Accessed: 2019-05-14]. Available from: https://

developer.android.com/training/testing/espresso/index.html

[74] Spring Security – Testing. [online], [Accessed: 2019-05-15]. Avail-
able from: https://docs.spring.io/spring-security/site/docs/
current/reference/html/test.html

[75] Testing the Web Layer. [online], [Accessed: 2019-05-15]. Available from:
https://spring.io/guides/gs/testing-web/

[76] Spring Boot – Testing. [online], [Accessed: 2019-05-18]. Avail-
able from: https://docs.spring.io/spring-boot/docs/current/
reference/html/boot-features-testing.html

[77] Clock (Java Platform SE 8). [online], [Accessed: 2019-05-18]. Avail-
able from: https://docs.oracle.com/javase/8/docs/api/java/
time/Clock.html

[78] Introduction to Hyper-V on Windows 10. [online], [Accessed:
2019-05-17]. Available from: https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/about/

[79] Managing Compute Resources for Containers – Kubernetes. [online],
[Accessed: 2019-05-17]. Available from: https://kubernetes.io/docs/
concepts/configuration/manage-compute-resources-container/

[80] Apache JMeter. [online], [Accessed: 2019-05-17]. Available from: https:
//jmeter.apache.org/

[81] Services – Kubernetes. [online], [Accessed: 2019-05-17]. Available from:
https://kubernetes.io/docs/concepts/services-networking/
service/

[82] Pods – Kubernetes. [online], [Accessed: 2019-05-17]. Available from:
https://kubernetes.io/docs/concepts/workloads/pods/pod/

[83] Apache JMeter. [online], [Accessed: 2019-05-17]. Available from: https:
//jmeter.apache.org/usermanual/glossary.html

[84] Google Play. [online], [Accessed: 2019-05-17]. Available from: https:
//play.google.com/store

66

https://developer.android.com/training/testing/espresso/index.html
https://developer.android.com/training/testing/espresso/index.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/test.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/test.html
https://spring.io/guides/gs/testing-web/
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.oracle.com/javase/8/docs/api/java/time/Clock.html
https://docs.oracle.com/javase/8/docs/api/java/time/Clock.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://jmeter.apache.org/usermanual/glossary.html
https://jmeter.apache.org/usermanual/glossary.html
https://play.google.com/store
https://play.google.com/store

Appendix A

Acronyms

API Application Programming Interface

HTTP Hypertext Transfer Protocol

JAR Java ARchive

JSON JavaScript Object Notation

REST Representational State Transfer

SDK Software Development Kit

UI User interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual machine

67

68

Appendix B

Contents of enclosed SD Card

readme.txt............................file with additional information
user_manual.pdf.....................user manual for the app in PDF
src..directory with source code

backend................................source code of the backend
mobile.............................source code of the Android app

thesis...............directory with LATEX-related files and the output
img............................directory with images for the thesis
_masters.tex.............the main LATEX source code of the thesis
masters_en.tex..............setup LATEX source code of the thesis
masters_en.pdf the thesis in PDF
bibliography.bib............................the bibliography file

69

70

Appendix C

User Manual

71

Sportivator – User Manual

User Interface

Login Screen
The login screen is displayed on the first start of the application or whenever authentication is

required. It hosts a button for authenticating through your Strava account.

Login screen and dashboard.

Bottom Navigation
The bottom navigation bar contains two clickable elements:

1. Home: navigates to the dashboard.

2. Achievements: navigates to the screen with unlocked achievements.

Dashboard
The dashboard contains two main areas with data:

1. Achievements summary: contains the current numbers of unlocked achievements for

different time periods:

a. current week,

b. current month,

c. current year,

d. all-time.

2. Activity-related data:

This section displays the following data:

a. The current number of synchronized activities.

b. The state of the last synchronization request:

i. Never – never requested,

ii. In progress – synchronization is in progress,

iii. Completed,

iv. Error – request finished with error.

c. If the state of the last sync request is Completed, the section also displays the date

and time of the completion of the request.

There are several buttons:

1. Synchronize activities button: orange circular button in the activity-related section.

2. Refresh button: button in the top-right corner for refreshing data.

3. Preference button: with the cog symbol, opens the preferences screen.

Achievements Screen
This screen hosts a list of unlocked achievements. The unlocks are filtered by the buttons in the top

area of the screen. Each row of buttons represents a single type of filtering. The first row switches

between unlocks in these time periods:

a. current week,

b. current month,

c. current year,

d. all-time.

The second row adds another filter combined with the previous one based on the type of sport:

a. run (running),

b. ride (cycling).

The active filters are highlighted, only a single button in each row can be active at a time. If there are

no achievements available for the current combination of filters, a corresponding message is displayed

instead of the list.

Unlocked achievements and achievement unlock detail screens.

Achievement Unlock Detail Screen
The screen with details about a single unlock of an achievement displays the following information:

a. name of the unlocked achievement,

b. its description,

c. the time period for which it was unlocked,

d. the date of the last unlock of the achievement for this time period.

Usage

Authenticating
To successfully authenticate, follow these steps:

1. Click on the Connect with Strava button on the login screen to open a Strava authorization

screen.

2. If you have the official Strava app (version 75.0 or higher) installed on the device, the

screen opens in the Strava app. Otherwise, the Strava Authorization screen opens in a

browser. Either way, if prompted to login to Strava with your account, please do so.

3. Click on the Authorize button. This should follow by navigating back to Sportivator,

finishing the login process and opening the main screen of the app – dashboard.

Synchronizing Activities
To synchronize new activities from Strava, click on the orange circular sync button on the dashboard.

The current sync status gets updated. Once the sync is completed, the app automatically refreshes the

data, including the unlocks of achievements.

Refreshing Data
Data can be also refreshed manually, if needed, by clicking on the refresh button in the top right corner

of the dashboard.

Logout
If you want to logout from the app, click on the preference button (with the cog symbol) on the

dashboard. When the preferences screen opens, click on the Logout option. This logs you out of the

app and opens the login screen.

Display Unlocked Achievements
Navigate to the screen with unlocks by clicking on the navigation element with the text Achievements

in the bottom navigation bar. Optionally, filter the unlocks by the filters described previously.

Display Achievement Unlock Detail
To display the detail of a single unlock of an achievement, click on one in the list with unlocks. This

opens the screen with details for the selected unlock.

	Introduction
	Motivation
	Application Description
	Goal of the Thesis

	Analysis
	Existing Applications
	Strava
	Strava Apps
	Garmin Connect
	Summary

	Requirements
	Functional Requirements
	Non-functional Requirements

	Domain Model
	Use Cases

	Design
	Overview
	Android App
	User Interface
	Authentication
	API
	Entities

	Backend
	Service Architecture
	Services
	External Systems
	Entities
	Authentication

	Implementation
	Android App
	Structure
	Libraries
	User Interface
	ViewModel
	Models
	Local Storage
	Caching
	Authentication

	Backend
	Structure
	Libraries
	Authentication
	Activity Synchronization
	Achievements
	Communication between Services
	Deployment

	Testing
	Android App Testing
	End-to-end Tests

	Backend Testing
	API Tests
	Unlocking Achievements
	Integration Tests

	Manual Testing
	Performance

	Conclusion
	Implemented Application
	Future Work

	Bibliography
	Acronyms
	Contents of enclosed SD Card
	User Manual

